

Hospital

University

Correctional facility

Nursing home

April 10, 2018 (C) 110

Combined Heat and Power

Summit Eastern Missouri

Introduction

<u>Speaker</u>

- Blake Ellis, PE, DBIA, LEED AP
- Principal with BURNS MSDONNELL.
- Director of *On*Site Energy & Power

Practice

<u>Agenda</u>

- Why Does CHP Make Sense?
- Insight into CHP Project
 Development
- Case Studies
 - Hospital
 - Correctional Facility
 - Nursing Homes
 - Higher Education

Why Does CHP Make Sense?

- Energy Cost Stability
 - Longer term contracts
 - Fuel flexibility
- Environmental
 - Reduces carbon footprint
 - Provides a bridge to other technologies
- Efficiency
 - Higher efficiency than traditional systems

- Financial
 - Lost revenue due to power disruption
 - Reduce energy costs (It makes cents)
 - Funds other initiatives
- Resiliency (Energy Security)
 - Natural disasters
 - Point of refuge for the community

What's Important for CHP?

- Near term capital expenses
 - Replacement of aged assets (ideally heating assets)
 - Facility expansion (need for new assets)
- Hours of operation
 - Closer to 24/7/365 the better
 - High utilization of high efficiency system
- Connection costs
 - Heating system
 - Fuel source
 - Electrical

What's Important for CHP?

- Implementation logistics
 - Access
 - Shutdowns
 - Timeline
- Year-round thermal needs
 - Ideally heating, but can be cooling
 - Includes laundries and domestic hot water
- Load profiles
 - Thermal
 - Electrical

Domestic Hot Water

Commercial Laundry

What's Important for CHP?

30,000 TIER 3 Interconnect ■ TIER 1 Interconnect 25,000 20,000 Connected Load, KW 10,000 5,000

Steam Load Profile

Electric Load Profile

- Initial Step: CHP Evaluation (fitness test)
 - DOE TAP
 - Engineering firm
 - Small capital investment
 - Desktop evaluation
- Areas of focus
 - Current load profiles
 - Growth plans / asset replacement
 - Electric and gas rates
 - Fuel source availability
 - Implementation logistics

Is CHP an idea worth further investigation?

Without spending much money

- Next Step: Screening Analysis
 - Level I CHP analysis
 - Described in CHP Handbook
 - Narrows range of options
 - Requires a site visit
- Areas of focus
 - Detailed (hourly) load profiles
 - Detailed energy rate structures
 - Including standby charges
 - Develop a Base Case
 - General arrangements
 - Parametric cost estimates
 - Air permit review

ECHP

- Next Step: Detailed Analysis
 - Level II CHP analysis
 - Described in CHP Handbook
 - Determines the best option
 - Level of detail/effort can vary widely
- Areas of focus
 - Focus on just a few (1-3) options
 - More detailed design
 - Project execution developed
 - More detailed cost estimates
 - Detailed sensitivity
 - Air permit analysis

SCHP

NAESCO M

National Association of

Energy Service Companies

- Final Steps: Design, Construction & Operation
 - Like a typical project
 - Many implementation methods
- Areas of focus
 - Funding
 - Self-Financed
 - Energy Investment Firms
 - Energy Performance Contracts (ESCO & UESC)
 - Design
 - Construction
 - Turnover
 - Operations

Case Studies

- Hospital
 - Shands Healthcare, Gainesville, FL
- Correctional Facility
 - Fresno County, California Fresno, CA
- Nursing Homes
 - Summary of 148 installations nationwide
- Higher Education
 - Carleton College, Northfield, MN
 - Harvard University, Boston, MA

Shands Hospital Gainesville, FL

- New Cancer Hospital Campus
- Phase 1:
 - 500,000 ft²
 - 200 beds
 - Level 1 trauma center
- 35 Year Plan:
 - 3,000,000 ft²
 - 1200 beds
 - 15 MW electrical demand
 - 16,000 tons of cooling

South Energy Center:

- Phase 1
 - 4.6 MW gas turbine
 - 45,000 lb/hr fired HRSG
 - 30,000 lb/hr back-up boiler
 - 4,200 Tons of chilled water
- Planned Phase 2
 - 4.6 MW CTG w/ HRSG
 - 1,500 ton chiller

Shands Hospital

Gainesville, FL

- Phase 1 CHP
 - Owned & Operated by Gainesville Regional Utilities
 - Serves 100% of electrical load
 - Disconnects from the grid during storms
 - Calculated thermal loads ~ 30% greater than actual loads
- Phase 2 CHP
 - Need only electrical & cooling
 - 7.4 MW reciprocating engine

Fresno County (CA) Facilities

Includes County Correctional Facility

- 1.25 MW reciprocating engine prime mover
 - Exhaust recovery generates steam
 - Jacket water recovery generates DHW
- Upgraded boilers, chillers & HVAC Systems
- Conversion of electrical service from secondary to primary
- \$1 million in rebates for the CHP system
- 5,086 tons of CO2 reduction
- 15 year energy savings project

Nursing Homes

Nationwide

- 148 installations nationwide
- Locations
 - 12 states
 - Top 5 (90% of total): NY, NJ, CT, MA, CA
- Type of prime mover
 - 92% reciprocating engines
 - 8% microturbine & other
- Summary
 - Generally smaller systems
 - Many ESCO financed examples

Nursing Home Examples

Nationwide

Wartburg Nursing Home

Brooklyn, NY

- 230 beds
- Old boiler room needed replacement
- Solution
 - 225kW CHP system (three modules)
 - Three small thermal storage tanks
 - Supplemental gas boiler
 - Self financed with savings
- Purchase 5% of electricity from utility

Meriden Nursing Home

Meriden, CT

- 104 beds
- Natural gas boilers, water heaters
- Looking to be more environmentally friendly
- Solution
 - 75kW CHP system
 - \$30,000 savings per year/four year payback
 - ESCO financed

Carleton College

Northfield, MN

- Liberal arts college in Minnesota
- Strong sustainability focus
- Timeline
 - 1910: Steam heating (via coal) from central plant
 - 1941-42: Convert central plant to natural gas
 - 1950's & 60's: New <u>buildings</u> use hot water for heating
 - 2004: 1.65 MW wind turbine
 - 2006: Convert to 15kV distribution add backup generators
 - 2011: Add second wind turbine
 - 2014: Campus master plan
 - 2016: Campus <u>utility</u> master plan

Carleton College

Northfield, MN

- Desire: Convert campus to geothermal
- Problem: Long (20+ year) payback
- Solution: Include CHP
 - Reciprocating engines
 - Investigated options from 1.1-1.7 MW
 - Reduces utility & operating by 36%
 - Reduces Scope 1 and Scope 2 emissions by 38%
 - Reduces payback to 17 years
 - \$9.8M savings over 30 years
 - Natural Gas: \$3.90 / MMBtu (HHV)
 - Electricity: \$0.072 / kWh (blended)

Harvard University Cambridge, MA

- Development Process
 - Level I CHP Study (5-15 MW)
 - Level II CHP Study (5-15 MW)
 - Design & Construction
- 7.5 MW combustion turbine prime mover
- Works with existing steam turbine
 - Existing 5 MW backpressure turbine
 - Combined cycle for 8 mo. per year
- Expanded electrical distribution (new microgrid)
 - New service to buildings
 - Connects with solar array

Summary

- CHP Makes Sense (& Cents)
 - Energy cost stability, environmental, efficiency, financial & resiliency
- What's Important for CHP
 - Near term capital expenses, hours of operation, connection costs, implementation logistics, year-round thermal needs & load profiles
- Project Development has Many Phases
 - Evaluation, screening analysis, detailed analysis, design, construction & operation
 - Allows for gradual investment
 - The devil is in the details (regarding analysis)
- Several examples of Successful Projects
 - All segments (hospital, correctional facility, nursing homes, college & university)
 - Large and small (kW to MW)